Chemical Foundations of Technologies

For years the research group deals with the Study of Reaction Mechanisms involving Organic Free Radicals in different fields, like the Biological and Polymeric ones, where these species are considered as the main responsible of Autooxidation processes. The knowledge acquired is also exploited in the Study of Free Radical Polymerization with the aim to obtain new environmentally friendly materials, in a Circular Economy perspective.
  • Synthesis and Study of new derivatives as Antioxidant in Biological and Polymeric Systems;
  • Synthesis of Nitroxide Radicals and their Nitrones precursors as Radical Scavengers to be used in the Electron Paramagnetic Resonance (EPR) Spin Trapping technique;
  • Synthesis of Nitroxide Radicals and their corresponding Alkoxyamines to be used in the Controlled Radical Polymerization (CRP);
  • Synthesis of new Polymeric Biodegradable Materials through the Controlled Radical Polymerization methods (CRP)
  • Theoretical Calculations of the Density Functional Theory (DFT) type to obtain Electronic, Thermodynamic and Kinetic parameters of Transient Free Radical Species.


The research activity carried out in the Bionanotechnology laboratory concerns the design and characterization of liquid crystalline nano-systems for a variety of hydrophobic, and hydrophilic small molecule drugs, peptide, proteins, DNAs and RNAs. These lyotropic systems are interesting soft materials thanks to their rich polimorfism as a function of concentration and temperature. They can be used as drug or gene delivery vectors, and in some cases for the controlled or targeted delivery to specific receptors. Liposomes, hexosomes and cubosomes represent carriers currently used in our research. Particularly the research activity is developed through:
  • Design and synthesis of functionalized amphiphilic lipids that can self-assemble into nanostructures such as micelles, liposomes or structures more complex used in gene or drug delivery.
  • Physical chemistry and chemical physics characterization of complex structures and correlation of their structural features with the ability to incorporate drugs or nucleic acids to delivery. Methods used: X-ray diffraction, Electrophoretic and Dynamic Light Scattering, Electrophoresis
The research activity for the study of the structure of matter is carried out not only in the Bionanotechnology Lab of the SIMAU Department but also  in some large international facilities, particularly the European Synchrotron Radiation Facility (ESRF), (Grenoble – France), the Elettra Synchrotron (Trieste – Italy), ALBA synchrotron (Barcelona-Spain) e ISIS neutron source (Oxford- England)
Another activity carried out in the lab concerns the synthesis, characterization and optimization of molecularly imprinted polymers for the removal of Diclofenac (DCF) or other contaminants from waste water.


          Liposomes for targeted gene and drug delivery

E. Crucianelli, P. Bruni,A. Frontini, L. Massaccesi, M. Pisani, A. Smorlesiand G. Mobbili, RSC Advances, 2014, 4, 58204
         Innovative nanomaterials for applications in materials science and engineering, biology and nanomedicine
Astolfi, P.; Giorgini, E.; Gambini, V.; Rossi, B.; Vaccari, L.; Vita, F.; Francescangeli, O.; Marchini, C.; Pisani, M. Langmuir2017, 33 (43), 12369–12378.
Astolfi, P.; Giorgini, E.; Adamo, F. C.; Vita, F.; Logrippo, S.; Francescangeli, O.; Pisani, M.J. Mol. Liq.2019, 286, 110954.




The research activity carried out at the Infrared Spectroscopy Laboratory is developed through the application of FTIR spectroscopy in the medium and near infrared for the study and characterization of organic, inorganic and biological compounds in different physical states. The coupling between IR spectroscopy and visible microscopy allows to analyze micron-sized samples and to obtain colorimetric maps in which each pixel corresponds to an infrared spectrum. The large amount of data acquired on a single sample is then subjected to statistical and multivariate analysis. The field of applicability is very wide: both organic and inorganic substances can be effectively analyzed.
1 – FTIR Imaging of biological samples
  • Spectroscopic characterization of biological samples, such as tissue sections from surgical resection or biopsy of various districts, to obtain important information about the composition and distribution of the main biomolecules (proteins, nucleic acids, lipids and carbohydrates).
  • Identification of specific spectral markers to distinguish the different degrees of malignancy in tumor pathologies, to confirm and support the results obtained from the common molecular diagnostic tests;
  • In vitro IR analysis of primary tumor cell lines, study of their biochemical composition and cell metabolism. Evaluation of the effects deriving from stress situations (chemotherapeutic, thermal and oxidative shock) on tumor cell cultures: analysis of changes in the lipid, protein and carbohydrate components.
This experimental activity is carried out in collaboration with the ELETTRA Research Center (Trieste).
2 – FTIR of biocompatible materials
  • Vibrational analysis of synthetic materials for dental restoration with evaluation of their chemical-physical properties, degree of polymerization and presence of any non-biocompatible substances.
  • Analysis of chemical-physical changes due to b and g rays irradiation used for the sterilization of polymers for biomedical applications.
3 – FTIR of materials in engineering
  • Qualitative and quantitative analysis of modified bitumens for the research of modification polymers (SBS and EVA).
  • Characterization of composite materials (bricks, plasters, etc.) and evaluation of their chemical-physical properties, also following aging treatments (UV radiation, freeze-thaw cycles)
4 – FTIR of synthetic polymers
  • Analysis and characterization of biodegradable polymers, obtained from natural molecules, to identify the presence of anomalies related to their working process and to characterize the products obtained by possible oxidative processes or by radical reactions, which can induce a variation of the crystalline lattice of the starting material.
5 – FTIR of Microplastic
  • Analysis and characterization of microplastics obtained from the seabed, beaches and purification plants, to assess their degree of conservation.

The research activity is based on theoretical (in silico) studies of natural and synthetic polymeric systems, and of the behavior of molecules with antioxidant activity through an approach based on the DFT (Density Functional Theory) method and on Molecular Dynamics simulations (Molecular Dinamica ). The combined use of these techniques allows us to study radical species, small molecules and solid and liquid systems at an atomistic level, simulating their behavior over time, in order to provide useful tools for predicting the stability and the structured and electronic properties of complex systems. This detailed method provides to clarify the experimental macroscopic evidence, to stimulate and identify the best experimental conditions with regard to obtaining complex macromolecular systems, controlled the optimization of time and costs, including consumption and purchases, at the same time, a method valid for the identification of physico-chemical characteristics with a high level of reliability.
List of activities:
  • Study of the behaviour of molecules with antioxidant activity and evaluation of the possible influence exerted by the environment;
  • Stability studies of different radical forms possible for the same specie;
  • Stability studies of natural and synthetic polymeric systems, and studies on conformational flexibility at different temperatures;
  • Prediction of the pharmacological properties of natural and synthetic molecules on the basis on interactions with specific macromolecular systems;
  • Study of the electronic properties of semiconductor materials to be used in the field of analogy and digital electronics.