Maqbool Qaisar

Ufficio/ Room:
Q165_057

Telefono/ Phone:
+39 071 220 4414

Email:
q.maqbool@univpm.it

Tutor:
Tittarelli Francesca

1 – RESEARCH TITLE:
‘New smart materials for building applications’
At “Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente e Urbanistica”
SIMAU ING-IND/22 (Scienza e Tecnologia dei Materiali)

2 – Web links
LinkedIn: https://www.linkedin.com/in/qaisar-maqbool/
Google Scholar: https://scholar.google.com/citations?user=r7RcyIEAAAAJ&hl=en
Scopus Author ID: 57190396731

3/1 – Ph.D. Research Summary (2019-22) – Italian version

I nanomateriali di nuova generazione (NM) ad alte prestazioni sono molto desiderati; tuttavia, le procedure di sintesi esistenti sono costose, complicate e insostenibili.  Il forte consumo di risorse naturali, l’uso di reagenti sintetici pericolosi e i metodi di sintesi dannosi per l’ambiente sono le principali preoccupazioni che richiedono metodi di progettazione più sicuri. Soprattutto, seguendo gli Obiettivi per lo Sviluppo Sostenibile (SDG) delle Nazioni Unite, vale la pena implementare un approccio di nanosintesi sostenibile (SNS). Un passo avanti, un modo molto efficiente potrebbe essere il concetto “dal rifiuto – al trattare il rifiuto”, che è stato seguito attivamente nella presente tesi di laurea.  I NM di nuova generazione ad alte prestazioni sono stati ottenuti attraverso la valorizzazione di rifiuti eterogenei e comprendono a)- grafene mutato come NM b)- TiO2-NM anatasio puro c)- TiO2-NM policristallino d)- TiO2-NM anatasio termostabile non drogato con metalli e)- nanocellulosa f)- nanocompositi (NC) combinando nanocellulosa e TiO2-NM o ossido di grafene ridotto (rGO).

Il monitoraggio operando di un sensore di metanolo a temperatura ambiente in nanocomposito (TiO2@rGO-NC) ha dimostrato che il meccanismo di rilevamento del nanocomposito si basa sull’effetto combinato dell’ assorbimento fisico reversibile del metanolo e del chemi-assorbimento irreversibile, sulla modifica del sensore nel tempo, e sulla deplezione/ripristino di elettroni/O2 a causa di una reazione elettrochimica superficiale che forma CO2 e H2O. Inoltre, i TiO2-NMs di sintesi green (GS) hanno dimostrato una rapida rimozione degli inquinanti organici (Crystal Violet, Methyl Violet) dalle acque reflue attraverso l’adsorbimento superficiale e la fotocatalisi, nonché la degradazione fotocatalitica (NO)x sotto luce UV e visibile, rispettivamente, superiore del 70% rispetto a quella di due TiO2-NMs di grado commerciale. Inoltre, i TiO2-NM non drogati con metalli, aggiunti a vernici a base d’acqua, sono stati in grado di ottenere una rimozione del 99% degli inquinanti adsorbiti in superficie sotto i raggi UV e la luce naturale del sole, insieme a un’eccellente stabilità nella formulazione di una vernice.

3/2 – Ph.D. Research Summary (2019-22) – English version

High performance next-generation nanomaterials (NMs) are much desired; however, the existing synthesis procedures are costly, complicated, and unsustainable.  Robust consumption of natural resources, use of hazardous synthetic reagents and environmentally harmful synthesis methods are the main concerns which demand safer-by-design methods. Most importantly, following UN Sustainable Development Goals – SDGs, it is worthwhile to implement sustainable nanosynthesis (SNS) approach. A step forward, a much efficient way could be the concept of from waste – to treat waste which was actively followed in the current dissertation.  High performance next-generation NMs were obtained through heterogenous waste valorization and include a)- mutated graphene like NMs b)- pure anatase TiO2-NMs c)- polycrystalline TiO2-NMs d)- non-metal-doped thermostable anatase TiO2-NMs e)- nanocellulose f)- nanocomposites (NC) by combining nanocellulose and TiO2-NMs or reduce graphene oxide (rGO).

Operando monitoring of a room temperature nanocomposite (TiO2@rGO-NC) methanol sensor demonstrated that the sensing mechanism of the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O2 depletion-restoration due to a surface electrochemical reaction forming CO2 and H2O. Moreover, green synthesized (GS) TiO2-NMs have demonstrated rapid removal of organic pollutants (Crystal Violet, Methyl Violet) from wastewater through surface adsorption and photocatalysis as well as photocatalytic (NO)x degradation under UV and visible-light respectively, 70% higher than that of two commercial grade TiO2-NMs. Additionally, non-metal-doped TiO2-NMs, when added to water-based paint, were able to achieve 99% removal of surface adsorbed pollutants under UV and natural sunlight, paralleled by excellent stability in a paint formulation.

4 – Publications [Top 5]

4/1 – Catalysis Science & Technology   IF: 6.17    (Featured on the Front Cover)
Maqbool, Q., Yigit, N., Stöger-Pollach, M., Ruello, M.L., Tittarelli, F. and Rupprechter, G., 2023. Operando monitoring of a room temperature nanocomposite methanol sensor. Catalysis Science & Technology, 13, 624-636.

https://doi.org/10.1039/D2CY01395A
https://doi.org/10.1039/D3CY90008H
https://www.tuwien.at/en/tch/news/news/cover-image-for-operando-studies-of-a-nanocomposite-methanol-sensor

4/2 – Journal of Hazardous Materials    IF: 14.22
Maqbool, Q., Barucca, G., Sabbatini, S., Parlapiano, M., Ruello, M.L. and Tittarelli, F., 2022. Transformation of industrial and organic waste into titanium doped activated carbon–cellulose nanocomposite for rapid removal of organic pollutants. Journal of Hazardous Materials, 423, p.126958.

https://doi.org/10.1016/j.jhazmat.2021.126958

4/3 – Journal of Cleaner Production    IF:11.07
Maqbool, Q., Czerwinska, N., Giosue, C., Sabbatini, S., Ruello, M.L. and Tittarelli, F., 2022. New waste-derived TiO2 nanoparticles as a potential photocatalytic additive for lime based indoor finishings. Journal of Cleaner Production, p.133853.

https://doi.org/10.1016/j.jclepro.2022.133853

4/4 – International Journal of Nanomedicine    IF: 7.03
Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, F. and Jan, T., 2016. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. International journal of Nanomedicine, 11, pp.5015-5025.

https://doi.org/10.2147/IJN.S113508

4/5 – Frontiers in Plant Sciences    IF: 6.62
Anwaar, S., Maqbool, Q., Jabeen, N., Nazar, M., Abbas, F., Nawaz, B., Hussain, T. and Hussain, S.Z., 2016. The effect of Green synthesized CuO Nanoparticles on callogenesis and regeneration of Oryza sativa L. Frontiers in Plant Science, 7, p.1330.

https://doi.org/10.3389/fpls.2016.01330

5 – Research Grants [Top 2]

5/1 – EU Cost Action EsSENce (STSM Fellowship)

Scientific Mission: Free Standing, Graphene Based, Biocompatible 3D Composite Materials for Environmental and Biomedical Applications 
The European Cooperation in Science and Technology.
Specific Role: COST Project EsSENce Scholarship (STSM)
TU Wien – Institute of Materials Chemistry
Getreidemarkt 9, 1060 Vienna, Austria [Host]
Work Summary

  • Synthesis of Free Standing, light weight highly functionalized Graphene (carbon) and Metal/Metal Oxide NS based Nanocomposite.
  • Utilizing “Electrospun” technique to create 3D Graphene (carbon) based composite materials with high surface area for proposed applications (high performance gas/liquid phase sensors).
  • Understanding the physicochemical properties of the prepared material using advanced tools.
  • Making it possible to produce practically applicable 3D Graphene (carbon) composite materials to be incorporated into smart appliance for sensing/adsorption/catalytic applications. Moreover, improving the gas sensing performance of the material at room temperature.

5/2 – EU Cost Action EsSENce (VM Grant)

Graphene oxide based electrospun nanonet for urea adsorption: Feasibility of 3D realistic design and preparation protocol 
The European Cooperation in Science and Technology.
Specific Role: COST Project EsSENce Scholarship (VM Grant)
TU Wien – Institute of Materials Chemistry
Getreidemarkt 9, 1060 Vienna, Austria [Virtual Host]
Work Summary

  • The initial performance of the prepared material (graphene based electrospun nanonet) studied through in-situ ATR-IR will be discussed through networking tool (TEAM/ZOOM) with the motive to understand the existing material properties with focus on modifying the material to meet the desired outcome.
  • Feasibility of 3D realistic design: Next, the possibility of making a 3D working design will be evaluated and, at the end, finalization of working 3D model will be done using graphical user interface software such as Adobe Creative Clouds, Solid works etc.
  • Production of 3D realistic design: The finalized 3D design of the adsorption-device will be processed through 3D-priting or possibly through 3D-additive manufacturing.
  • Preparation of graphene oxide based Electrospun nanonet.
  • Operando-ATR-IR for the experimental testing of 3D adsorption device: Finally, VM will allow us to design the much-needed experiment which can monitor the surface interactions of analyte over the deposited material (inside the 3D chamber of the device) and, at the same time, measure analyte concentration quantitively through UV spectrometer.

6 – Honors and Awards [Top 5]

6/1 – Gold Medal
Distinguish Performance – MS Biotechnology [18 years of education]

6/2 – Gold Medal
Distinguish Performance – MSc Biology [16 years of education]

6/3 – HEC-Outstanding Research Paper Award – 2018
Higher Education Commission -HEC- (Government of Pakistan)
Research Article: The effect of Green synthesized CuO Nanoparticles on callogenesis and regeneration of Oryza sativa L. Frontiers in Plant Science, 7, p.1330

https://www.vu.edu.pk/NewsDetails.aspx?type=&NewsId=2849

6/4 – Famelab National Competition Award
Università Politecnica delle Marche, Ancona, Italy

6/5 – Contamination Lab Winner (cLab UNIVPM)
Università Politecnica delle Marche, Ancona, Italy
https://simau.univpm.it/2022/05/24/news-c-lab/